ИНСТРУКЦИЯ ПО НАСТРОЙКЕ ДЕФЕКТОСКОПА УСД-50 С НАКЛОННЫМ ИЗНОСОСТОЙКИМ ПРЕОБРАЗОВАТЕЛЕМ П121-5,0-65 SENDAST.

1. Общие положения (вводная часть)

- 1.1. Настройка ультразвукового дефектоскопа является важнейшей частью технологического процесса ультразвукового контроля.
- 1.2. В настоящей инструкции описываются общие принципы настройки ультразвукового дефектоскопа УСД-50 совместно с пьзоэлектрическим преобразователем П121-5-65 SENDAST.
- 1.3. Алгоритм, описанный в настоящей инструкции, возможно, применить к любым наклонным преобразователям П121 SENDAST.
- 1.4. Данная инструкция может быть полезна дефектоскопистам 1-го и 2-го уровня, выполняющим ультразвуковой контроль основного металла и сварных соединений на различных опасных производственных объектах.

Рис. 1 Дефектоскоп УСД-50, преобразователь П121-5-65 SENDAST

2. Подготовка дефектоскопа к работе. Функциональные клавиши и структура меню.

2.1. Подключить к дефектоскопу наклонный совмещённый преобразователь П121-5-65 SENDAST. На верхней части прибора находятся разъёмы Lemo00 для подключения ультразвуковых преобразователей (правый разъём – генератор, левый разъём – приёмник). Так как используется совмещённый преобразователь, его можно подключать в любой из разъёмов.

2.2. Включить прибор, для этого необходимо зажать и удерживать кнопку в течении 3-х секунд. Клавиатура прибора позволяет получить лёгкий и быстрый доступ к регулировке любого параметра работы прибора. Перемещение по меню:

Рис. 3 Клавиатура дефектоскопа

Также на клавиатуре находятся следующие кнопки (Рисунок 2):

- «Заморозка» экрана
- Увеличение сигнала в а-зоне на весь экран
- Сохранение результата
- Вход в дополнительное меню (если прибор не находится в режиме изменения значения параметра) или сервисная кнопка для активации дополнительных возможностей изменения параметров
- Увеличение усиления на заданное в дополнительном меню количество децибел
 - Включение/выключение полноэкранного режима работы
- Включение/выключение прибора
- 2.3. Главное меню дефектоскопа.

Главное меню расположено внизу экрана и состоит из 17 пунктов, каждый из которых, в свою очередь, содержит четыре параметра работы, расположенные в правой части экрана. Структура главного представлена в таблице 1.

Главное меню	ПАРАМЕТРЫ			
ОСНОВНЫЕ	Скорость	Развёртка	Задержка	Отсечка
A-30HA	а-порог	а-начало	а-ширина	а-режим
Б-30НА	б-порог	б-начало	б-ширина	б-режим
АСД	Режим	Звук	Свет	
ВРЧ	Точка	Положение	Усиление	Включить
ТРАКТ	Полоса	Фильтр	Детектор	R входа
ΓΕΗΕΡΑΤΟΡ	Напряжение	Частота ЗИ	Периодов	Част.повт.
ДЕМПФЕР	R выхода	Длит. ЭД	Задерж. ЭД	L выхода
ДАТЧИК	Совм. режим	Угол ввода	Протектор	
ИЗМЕРЕНИЕ	Величина	Время	Импульс	Образец
ЭКРАН	Подсветка	Сетка	Заполнение	График ВРЧ
РЕЗУЛЬТАТЫ	Файл	Запомнить	Просмотр	Очистить файл
		значение	файла	
НАСТРОЙКИ	Загрузить	Сохранить	Загрузить	Сохранить
	настройку	настройку	рабочую	рабочую
РЕЖИМ	Б-скан	Огибающая	а-масштаб	
ЦBET 1	Фон	Разметка	Текст меню	Курсор
ЦBET 2	Сетка	Сигнал	а-зона	б-зона
ЦВЕТ 3	Огибающая	График ВРЧ	График АРК	Результаты

Таблица 1 – Структура главного меню дефектоскопа УСД-50

Далее, при указании изменения параметров будем обозначать пункт главного меню большими буквами через тире параметр, который необходимо изменить.

Пример: необходимо изменить значение скорости распространения ультразвуковой волны на 3250 м/с.

Запись будет выглядеть следующим образом: Установить скорость распространения ультразвуковой волны. ОСНОВНЫЕ-Скорость = 3250 м/с.

3. Установка параметров преобразователя П 121-5-65 SENDAST и скорости распространения ультразвуковой поперечной волны.

3.1. Установить совмещённый режим: ДАТЧИК- Совм. Режим = Да.

3.2. Установить частоту зондирующего импульса преобразователя ГЕНЕРАТОР-Частота ЗИ = 5МГц.

3.3. Установить скорость распространения поперечной ультразвуковой волны. ОСНОВНЫЕ-Скорость = 3250 м/с.

Установка параметров преобразователя и скорости распространения ультразвуковой поперечной волны

4. Определение параметров преобразователя П121-5-65 SENDAST.

4.1. Определить положение точки выхода ультразвукового луча (стрелу) пьзоэлектрического преобразователя, используя меру СО-3.

Нанести контактную жидкость на плоскую поверхность меры CO-3. Установить П 121-5-65 SENDAST, совместив обозначенную на боковой поверхности точку выхода ультразвукового луча с обозначением нуля на мере CO-3. Перемещением преобразователя влево-вправо вдоль поверхности меры CO-3, добиться получения на экране дефектоскопа максимума эхо-сигнала от вогнутой поверхности. Определить длину стрелы преобразователя, используя шкалу меры CO-3.

Примечание. Для более удобного использования меры CO-3 возможно использовать специальные направляющие рейсшины RELS CO-3 и подставку OPORA CO-3 производства OOO «3T».

Рис. 5 Определение точки выхода луча преобразователя

4.2. Определить задержку в призме преобразователя, используя меру СО-3.

Провести действия, аналогичные п. 4.1. Получив максимум эхо-сигнала от вогнутой поверхности меры СО-3, установить ИЗМЕРЕНИЕ-Величина = S, мм (дефектоскоп показывает значение пройденного ультразвуковой волной расстояния). Изменяя значение параметра ДАТЧИК- Протектор мкс, добиться значения S=55,00 мм.

Примечание. При использовании других настроечных образцов или мер, значение S должно быть равно радиусу кривизны, используемого образца.

Для удобства работы по установке параметров, можно использовать функцию «заморозки» экрана,

нажав кнопку (тосле получения на экране дефектоскопа максимума эхо-сигнала от вогнутой поверхности.

4.3. Определить действительный угол ввода ультразвукового луча преобразователя, используя меру CO-2.

Нанести контактную жидкость, установить преобразователь на меру CO-2, совместив отмеченную на боковой поверхности точку выхода ультразвукового луча с номинальным значением угла ввода на шкале. Перемещая преобразователь вдоль поверхности меры, добиться получения на экране дефектоскопа максимума эхо-сигнала от бокового цилиндрического отверстия диаметром 6 мм. Считать значение действительного угла ввода по шкале меры CO-2. Ввести полученное значение ДАТЧИК- Угол ввода.

Примечание. Для более удобного использования меры CO-2 возможно использовать специальные направляющие рейсшины RELS CO-2 производства ООО «3Т».

Рис. 6 Определение задержки в призме преобразователя

Рис. 7 Определение угла ввода преобразователя

4.4. Определить мёртвую зону преобразователя.

Нанести контактную жидкость, установить преобразователь на меру CO-2. Перемещая преобразователь вдоль поверхности меры, добиться получения на экране дефектоскопа максимума эхо-сигнала от бокового цилиндрического отверстия диаметром 2 мм на глубине 3 мм.

Примечание. Особенностью преобразователей SENDAST является очень малая мёртвая зона – менее 1 мм.

Рис. 8 Определение мёртвой зоны преобразователя

5. Настройка чувствительности и сохранение настройки.

- 5.1. Установить значение величины измерения ИЗМЕРЕНИЕ-Величина = H, dB.
- 5.2. Установить толщину образца ИЗМЕРЕНИЕ-Образец = 12,00 мм.
- 5.3. Установить браковочный уровень А-ЗОНА-а-порог = 50%
- 5.4. Установить уровень фиксации Б-ЗОНА-б-порог = 25%
- 5.5. Включить график ВРЧ ЭКРАН-График ВРЧ = ВРЧ.
- 5.6. Определить первую точку ВРЧ.

Нанести контактную жидкость, установить преобразователь на стандартный образец.

Перемещая преобразователь по поверхности образца, добиться получения на экране дефектоскопа максимума эхо-сигнала от отражателя типа «зарубка». Выбрать ВРЧ-Точка

= 1. Изменяя положение ВРЧ-Положение, установить первую точку ВРЧ напротив полученного на экране дефектоскопа эхо-сигнала.

Рис. 9 Установка браковочного уровня и уровня фиксации

Рис. 10 Установка величины измерения и толщины образца

Рис. 11 Определение первой точки ВРЧ

5.7. Определить вторую точку ВРЧ.

Провести действия, аналогичные п. 5.6, получить максимум эхо-сигнала от верхней «зарубки» стандартного образца. Выбрать ВРЧ-Точка = 2. Изменяя положение ВРЧ-Положение, установить вторую точку ВРЧ напротив полученного на экране дефектоскопа эхо-сигнала. Добавить усиление ВРЧ-Усиление. Включить ВРЧ ВРЧ-Включить = Да.

Рис. 12 Определение второй точки ВРЧ

- 5.8. Установить развёртку экрана ОСНОВНЫЕ-Развёртка таким образом, чтобы обе точки ВРЧ попадали в зону экрана.
- 5.9. Установить начало браковочного уровня А-ЗОНА-а-начало как можно ближе к зондирующему импульсу, но так, чтобы в зону контроля не попадали лишние сигналы.
- 5.10. Установить ширину браковочного уровня А-ЗОНА-а-ширина по второй точке ВРЧ.

Рис. 13

Установка развёртки экрана

5.11. Установить начало уровня фиксации Б-ЗОНА-б-начало, равную началу браковочного уровня. 5.12. Установить ширину уровня фиксации Б-ЗОНА-б-ширина, равную ширине браковочного уровня.

Установка начала и ширины уровня фиксации

5.13. Сохранить настройку НАСТРОЙКИ-Сохранить.

Примечание. Для удобства можно использовать следующую структуру записи настройки: Объект контроля или толщина_Частота преобразователя-Угол ввода_Номер преобразователя.

Рис. 15 Сохранение настройки